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SUMMARY

This paper describes an adaptive quadtree grid-based solver of the depth-averaged shallow water
equations. The model is designed to approximate flows in complicated large-scale shallow domains while
focusing on important smaller-scale localized flow features. Quadtree grids are created automatically by
recursive subdivision of a rectangle about discretized boundary, bathymetric or flow-related seeding
points. It can be fitted in a fractal-like sense by local grid refinement to any boundary, however distorted,
provided absolute convergence to the boundary is not required and a low level of stepped boundary can
be tolerated. Grid information is stored as a tree data structure, with a novel indexing system used to link
information on the quadtree to a finite volume discretization of the governing equations. As the flow field
develops, the grids may be adapted using a parameter based on vorticity and grid cell size. The numerical
model is validated using standard benchmark tests, including seiches, Coriolis-induced set-up, jet-forced
flow in a circular reservoir, and wetting and drying. Wind-induced flow in the Nichupté Lagoon, México,
provides an illustrative example of an application to flow in extremely complicated multi-connected
regions. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The hydrodynamics of coastal lagoons, shallow lakes, reservoirs, wide rivers and estuaries may
be simulated using the depth-averaged shallow water equations. Natural flow geometries are
invariably irregular and may contain significant local changes in bathymetry and bed rough-
ness. In tidal estuaries, nearly flat bed surfaces may be subjected to periodic wetting and
drying. Mixing processes in shallow flow domains can depend greatly on highly localized flow
features; for example, the recirculating gyres either side of an influent stream discharging into
receiving waters can act to trap pollutants.
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Numerical modelling of shallow flows is usually based on the two-dimensional depth-
averaged shallow water equations, though progress has been made with three-dimensional
solvers (e.g. Stansby and Lloyd [1]). The majority of shallow flow computational models utilize
non-adaptive regular Cartesian or curvilinear meshes. However, for complicated flow
geometries where local, possibly dynamically evolving, flow features are important, it is
desirable for computational efficiency that the underlying meshes should be boundary fitted,
automatic to generate, straightforward to refine locally, and dynamically adaptive.

Substantial research effort has been directed towards tackling the foregoing problems.
Several researchers have developed patched or nested rectangular grid models of the shallow
water equations. For example, Falconer and Alstead [2] used patched dynamically linked
rectangular grids to provide local grid refinement in zones of interest, such as at the entrance
to a tidal inlet. Rodenhuis [3] nested refined inside coarse rectangular grids. One disadvantage
of patched or nested grid models is the difficulty in ensuring adequate coupling between the
various mesh regions. Butler [4] applied stretched grids based on a uniformly varying
distribution of straight lines to the prediction of coastal flooding. Whereas it is possible to
focus on an area of interest, the refinement is not localized. Rodenhuis [3] indicates that it is
hard to implement an accurate central difference scheme on stretched grids. Since Johnson’s [5]
WESCOR model, curvilinear mappings have become popular for boundary fitting typical
shallow flow domains. Curvilinear grids may be generated by conformal, algebraic methods or
by the numerical solution of the Poisson-type partial differential equations that govern the
mapping [6]. Orthogonal curvilinear shallow water equation solvers have been developed which
are straightforward extensions of existing rectangular grid models (e.g. Willemse et al. [7], Lin
and Falconer [8]). Non-orthogonal curvilinear systems approaches are similar, but involve
more geometric terms to permit the greater mesh flexibility. The depth-averaged velocity
components may be expressed in cartesian (e.g. Johnson [5], Borthwick and Barber [9], Ye and
McCorquodale [10]), covariant (e.g. Sheng and Hirsh [11]), contravariant (e.g. Borthwick and
Akponasa [12]) forms leading to transformed governing equations of increasing complexity. In
an alternative approach, Borthwick and Kaar [13] solved the curvilinear depth-averaged
streamfunction and vorticity transport version of the shallow water equations. Scott and
Barber [14] adapted non-orthogonal curvilinear meshes using weighting functions related to
the flow depth for tidal flow in the Severn Estuary. Boundary fitted curvilinear shallow flow
models are best suited to simple flow domains with smoothly curving boundaries, but can
experience problems of mesh cell skewness leading to geometric non-conservation when
applied to more complicated domains. Manually controlled block techniques are required for
multiply connected domains.

Unstructured grids offer another extremely flexible approach to solving the shallow water
equations in very irregular domains. Grid generation is fully automatic, and the meshes can be
fitted to any geometry. There are disadvantages, notably the computational overheads due to
quality checks, the lack of nodal order and the sparse form of the solution matrix. Thacker
[15,16] and Bauer and Schmidt [17] solved the shallow water equations on a triangular grid by
finite differences for oscillations in a shallow circular basin, and storm surges. Recently,
Anastasiou and Chan [18] solved the Riemann invariant form of shallow water equations using
finite volumes on an advancing front triangular grid. Unstructured grids have been widely used
in finite element shallow water equation models, including those of Neta [19] and Kolar et al.
[20].
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This paper describes an alternative approach whereby the unsteady shallow water equations
are solved on adaptive hierarchical (rectangular panel) quadtree meshes. From a computa-
tional standpoint, quadtree grid generation is economical and can be applied easily to
extremely complex multiply connected geometries. There are relatively few applications of
hierarchical grids to shallow flow problems, the most notable being that of Gáspár et al. [21],
who modelled wind-induced lake circulation using the linearized shallow water equations on
quadtree meshes. The work presented herein is an extension of Gáspár et al.’s work to the
complete unsteady shallow flow equations. Of particular importance is the grid indexing
system, which neatly translates information held in the quadtree data structure to conventional
finite volume or finite difference notation. The shallow water equations are discretized using
staggered finite volumes with a QUICKEST scheme for the non-linear momentum fluxes, and
solved by an explicit time-stepping scheme. Validation results are presented for well-
documented test flows, including seiche motions in a rectangular basin, jet-forced flow in a
circular reservoir, a flow induced by the Coriolis force, and wetting/drying. A simulation of
wind-induced flow in the Nichupté Lagoon in México illustrates the quadtree model’s potential
to predict the flow pattern in a complicated flow geometry.

2. QUADTREE GRID GENERATION

Quadtree subdivision is one of the simplest domain decomposition methods [22]. The unit
square is progressively subdivided into sub-quadrants, the choice whether or not to divide
dependent on interior spatial information (such as seeding points, lines, pixel colours, etc.).
Quadtree techniques have been used in image processing [23], geographical information
systems [22], finite element meshing [24,25], computational fluid dynamics [26,27], species
transport modelling [28], and simulating steady shallow lake flows [29].

The quadtree grid generation algorithm used herein is similar to that described by Cheng et
al. [25] and Gáspár et al. [28]. A root cell of unit dimension contains the normalized domain
of interest. Recursive subdivision of the root cell takes place according to boundary seeding
points or prescribed flow criteria. The resulting hierarchical grid has a structure that may be
represented by a directed graph [28]. The original domain, �, corresponds to the root cell. The
branches indicate the subdivision process, and the subsquares �0, �1, �2 and �3, correspond
to the graph nodes at the next level. The resulting direct graph is a tree-type and the leaves
correspond to cells that are not subdivided further. Figure 1(a) depicts a typical 4-level
quadtree grid obtained about a single seeding point. This initial grid contains large fluctuations
in neighbouring cell sizes. Furthermore, hanging nodes are generated which are difficult to
handle in the discretization of partial differential equations [30]. Complicated interpolation
formulae are inevitably involved because careful treatment is required across cell interfaces so
as not to violate conservation laws. Hence, the number of hanging nodes across any cell
interface should be minimized. To ensure adequate domain definition, a regularization
constraint is imposed on the grid to eliminate abrupt changes in cell size; the linear dimension
of neighbour cells (faces and corners) is not permitted to differ from that of the object cell by
more than a ratio of 1:2 (Figure 1(b)). It is also sensible to reduce further the number of
topological arrangements of cells by additional subdivision of any large cells surrounded on
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Figure 1. (a) Initial 4-level quadtree grid. (b) Regularized 4-level quadtree grid.

two or three sides by smaller cells. This has the extra benefit of reducing the local discretization
errors.

A numbering system is required to identify cells and their neighbours. For example, van
Dommelen and Rundensteiner [26] used a fixed length panel number in base-3 notation and
Gáspár et al. [28] a base-4 system. The foregoing require number manipulations and tree
searches when finding the neighbour cells of a given object cell. Here, a new numbering system
is proposed whereby recursion is avoided and the indexing system corresponds directly to
conventional finite volume or finite difference notation. This makes neighbour cell identifica-
tion straightforward, unlike other quadtree numbering schemes. In the present system, each
grid cell is allocated three integer numbers (i, j, m) associated with row (i ), column ( j ) and
resolution level (m) information. The row and column numbers relate to the cell location in the
x- and y-directions respectively, and their values range from 0 to n−1 where

n=2m (1)

Figure 2 illustrates the numbering scheme. Consider cell 11 in Figure 2(a). It has resolution
level 4 and so the number of rows or columns for this level is n=24=16. Hence, a 16 by 16
matrix may be constructed with each row and column numbered from 0 to n−1=15. The cell
is therefore uniquely defined in this matrix at row 3 and column 12, which gives an index
number (12, 3, 4) as illustrated in Figure 2(b).

The indexing system makes cell identification straightforward. For any point P (x, y) inside
the unit square, the cell in which it is located is determined as follows: (i) start at the highest
level of resolution m=M, (ii) calculate n from Equation (1); (iii) determine row and column
integers from
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Figure 2. (a) Cell numbering for grid of Figure 1(a). (b) Indexing template for cell 11. (c). Tree
representation for grid of Figure 1(a).

i=INT[nx ] and j=INT[ny ] (2)

where INT denotes taking the integer part; (iv) compare the values of (i, j, m) with those in the
index list and if a match is found the cell has been identified, otherwise set m=m−1 and
return to (ii). As an illustrative example, consider point P (0.8, 0.2) within cell 11 in Figure
2(a). For m=4, then n=24=16, i=INT(16�0.8)=12 and j=INT(16�0.2)=3. This gives
the cell index as (12, 3, 4).

For any arbitrary cell with index (i, j, m), its linear dimension is simply
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�x=�y=
1

2m (3)

and its normalized cell lower-left corner co-ordinates are given by

(xc, yc)= (i�x, j�y) (4)

For complicated boundary profiles, the boundary seeding point locations are determined
using piecewise cubic–spline interpolation from an array of prescribed perimeter values.
This results in fine grid resolution at the boundary even when the prescribed data are
sparse. Cells that are outside the flow domain are not relevant to the flow solution and so
are discarded. It is assumed that the perimeter can be represented by a polygon generated
by cubic–spline interpolation. To determine whether a cell is inside or outside the polygon,
it is first assumed that the left-hand edge of the unit square is outside the polygon. A
horizontal line is then drawn from the object cell to the left-hand edge. The line is deemed
to cross the polygon boundary whenever the y co-ordinate of one end of the polygon
boundary is above the line and the other end below. If the number of line crossings is
even, the point is outside the polygon. If the count is odd, the point is inside. To allow for
cases where the horizontal line is tangential to the polygon perimeter, the procedure is
repeated using a vertical line.

The quadtree data structure is stored as a integer linked list vector, a. In the list, a
negative number refers to an undivided leaf cell, and its absolute value is the cell number.
A positive number indicates the cell is a parent, and its value points to the starting address
of its four offspring. For example, the linked list, corresponding to the grid in Figure 2(a)
is given in Table I, along with cell path numbers relating to the associated tree in Figure
2(c), where 0, 1, 2 and 3 refer to southwest, northwest, southeast and northeast cells
relative to the parent. The cell path number is obtained directly from the cell index number
(i, j, m) by computing the binary array (ib, jb)=BIN(i, j ) of length m, using additional zeros
if necessary. Each pair of binary digits in the array is renumbered in sequence so that
(0, 0), (0, 1), (1, 0), (1, 1) becomes 0, 1, 2, 3; the concatenated number is the cell path
number. Again as an example, consider point P in Figure 2(a). Its cell index number is
(12, 3, 4). The indices i=12 and j=3 convert to the following binary numbers ib=1100
and jb=0011, each of length m=4. Thus, the cell path number is 2211.

Simple index manipulations identify the relatives of an object cell. It is important to note
that the neighbour finding scheme described here is for a regularized grid. For the cell
(i, j, m), its parent cell index number is

Table I. Linked list for quadtree grid in Figure 2.

15 169876543i 21 10 11 12 13 14

−10 −11 −12 −13−1 −2 5 −3 −4 −5 9 −6 −7a(i ) 13 −8 −9
2210 2211 2212 22220 1Cell path 2 3 20 21 22 23 220 221 222 223
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(ip, jp, mp)=
�

INT
� i

2
�

, INT
� j

2
�

, m−1
�

(5)

and its offspring cell index numbers are

(io, jo, mo) = (2i+ci, 2j+cj, m+1) (6)

where (ci, cj)= (0, 0) for the southwest cell, (ci, cj)= (0, 1) for the northwest cell, (ci, cj)=
(1, 0) for the southeast cell, and (ci, cj)= (1, 1) for the northeast cell. For adjacent cells of
the same size, the neighbour cell number (in, jn, m) is found by adding 1 to or subtracting 1
from the row or column of the cell index number (i, j, m). For adjacent cells where the
neighbour cell dimension is twice the cell size, an initial neighbour index number (in, jn, m)
is estimated as if the cell were the same size; in this case, the tree search reveals that the
cell is larger than the initial cell, and so the neighbour cell number is (in/2, jn/2, m−1),
where the division is integer. For adjacent cells where the neighbour cell dimension is half
the cell size, an initial value is again first estimated as if the cell were the same size; in this
case, the tree search reveals that there is a subdivided cell with parent index number
corresponding to the first estimate neighbour number (in, jn, m). The correct neighbour cell
index number is then obtained as (2in+ci, 2jn+cj, m+1), where ci and cj control which
quadrant the cell is located, as for offspring cells discussed above.

The following example illustrates the application of the quadtree grid generator. Figure 3
shows the 8-level quadtree grid generated about a circle of radius 0.3, with stems of length
0.15 and width 0.065 located diametrically opposite each other. The mesh contains 3592
cells, with 2704 cells located inside the prescribed boundary after further uniform subdivi-
sion to level 6 and 2:1 regularization. The CPU time required to generate this mesh was
not significantly different to that required to generate a mesh about a simple circle without
stems. Hence, an advantage of quadtree grids is their relative ease in accommodating
additional mesh complexity compared with boundary fitted curvilinear meshes, which would
need to be generated using block domain procedures in this case.

3. SHALLOW WATER EQUATIONS

The shallow water equations (see e.g. Falconer [31]) are

��

�t
+

�qx

�x
+

�qy

�y
=0 (7)

�qx

�t
+

�Uqx

�x
+

�Vqx

�y
+gD

��

�x
− fcqy−

�wx

�
+

�bx

�
−

1
�

�DTxx

�x
−

1
�

�DTxy

�y
=0 (8)

and
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Figure 3. Quadtree grid for a circle with stems.

�qy

�t
+

�Uqy

�x
+

�Vqy

�y
+gD

��

�y
+ fcqx−

�wy

�
+

�by

�
−

1
�

�DTyx

�x
−

1
�

�DTyy

�y
=0 (9)

where � is the free surface elevation above still water level, qx and qy are volume flux
components in the x- and y-directions, fc is the Coriolis parameter, �wx and �wy are
wind-induced surface stress components, �bx and �by are bed stress components, Txx, Txy, Tyx

and Tyy are depth-averaged effective stresses (defined later), � is fluid density, g is the
acceleration due to gravity, t is time and D is the total depth (D=h+�, where h is the still
water depth). Note that qx=UD and qy=VD, where the depth-averaged velocity components
are

U=
1
D
� �

−h

ū dz and V=
1
D

� �

−h

�̄ dz (10)

in which ū and �̄ are the local mean (time-averaged) velocity components, and z is measured
in the vertical direction.

Wind-induced surface stresses are determined using the empirical formulae

�wx=�aCwWx�Wx
2 +Wy

2 and �wy=�aCwWy�Wx
2 +Wy

2 (11)
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where Cw is a friction coefficient, �a is air density, and Wx and Wy are the wind velocity
components. Similarly, the bed stresses are obtained from

�bx=
1
2

�CdU�U2+V2 and �by=
1
2

�CdV�U2+V2 (12)

in which the bed friction coefficient Cd=2g/C2=2n2g/R1/3, where R is the hydraulic radius
and C and n are the Chézy and Manning coefficients respectively.

To enable finite volume discretizations, the shallow water equations are rewritten in flux
form, using Cartesian tensor notation, as

��

�t
+

�qi

�xi

=0 (13)

and

�qi

�t
+

�Jij

�xj

+gD
��

�xi

+Si=0 (14)

in which xi is the co-ordinate direction (where i=1 refers to the x-direction and i=2 refers to
the y-direction), qi=UiD is the flux component corresponding to the depth-averaged velocity
component Ui. The source term Si is

Si=�ij fcqj−
�wi

�
+

�bi

�
(15)

where �wi is a surface stress component, �bi is a bed stress component, the permutation tensor
�ij= −1 if i, j=1, 2; �ij=1 if i, j=2, 1 and �ij=0 if i= j. Also

Jij=Ujqi−
D
p

Tij (16)

The depth-averaged effective stress, Tij, comprises the sum of molecular diffusion, Reynolds
and dispersion stresses

Tij=
1
D
� �

−h

��
��ūi

�xj

+
�ūj

�xi

�
dz−

1
D
� �

−h

�uiuj dz−
1
D
� �

−h

�(ūi−Ui)(ūj−Uj) dz (17)

where � is the kinematic viscosity coefficient of water. In turbulent flows, molecular diffusion
is of much smaller magnitude than the Reynolds stresses, and so can be neglected. Using the
Boussinesq approximation to relate the Reynolds stresses to the depth-averaged velocity
gradients, and ignoring the cross-derivative terms
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−
1
D
� �

−h

� uiuj dz=
��̃t

D
�qi

�xj

(18)

where �̃t is the depth-averaged kinematic eddy viscosity coefficient. The dispersion term results
from depth-integration of the advection terms and may be evaluated for prescribed velocity
distributions to give (e.g. Falconer [31])

1
D
� �

−h

�(ūi−Ui)(ūj−Uj) dz=
�

D
(�−1)Ujqi (19)

The � coefficient takes its value depending on the assumed vertical velocity profile. For
example, �=1+Cf/�

2 for a logarithmic profile [31], where � is the von Kármán constant.
Hence, the depth-averaged effective stress is

Tij=
��̃t

D
�qi

�xj

−
�

D
(�−1)Ujqi (20)

and the flux term is written

Jij=�Ujqi− �̃t

�qi

�xj

(21)

The flux form of the shallow water equations is therefore expressed by Equations (13)– (15)
and (21).

4. NUMERICAL SCHEME

The shallow water equations are spatially discretized using staggered control volumes. The
continuity equation (13) is integrated over each grid cell, whereas the momentum equations
(14) are integrated over adjacent half-cells about the flux interface. It should be noted that in
a staggered hierarchical grid not all of the variables (�, qx, qy) are located at the required
position in the control volumes; instead these values have to be interpolated from nearby nodal
values [32]. Here, interpolation has been used with the assumption that the grid may be refined
at the relevant cell should more precise values be required, so that the grid resolution will
match the quality of the data.

Figure 4 illustrates the control volume for the continuity equation. The control volume may
have a maximum of six face neighbours (N1, . . . , N6) depending on the arrangement of
neighbouring cells. The labelling system is such that the water level node is located at the
cell-centre, �c=�i, j,m, the x-direction volume flux at the west face of the cell, qxw= [qx ]i, j,m, and
the y-direction volume flux at the south face, qys= [qy ]i, j,m. Integration of the continuity
equation (13) over the control volume gives
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Figure 4. Control volume for the continuity equation.

� t+�t

t

�
A

��

�t
dA dt+

� t+�t

t

�
A

�qi

�xi

dA dt=0 (22)

where A=�x�y is the control volume area. Taking the water level � to be the average over
the control volume, integrating the first term over the area, integrating the second (flux
gradient) term in time after applying Green’s theorem, and rearranging gives

� c
n+1− � c

n+
1

�x
(Qe−Qw)+

1
�y

(Qn−Qs)=0 (23)

in which

Qe=
1
s

�
s

k=1

�� t+�t

t

(qx)e
n

k

dt��
�t
s

�
s

k=1

[(qx)e
n+1]k+ (1−�)

�t
s

�
s

k=1

[(qx)e
n]k (24)

Qn=
1
s

�
s

k=1

�� t+�t

t

(qy)n
n

k

dt��
�t
s

�
s

k=1

[(qy)n
n+1]k+ (1−�)

�t
s

�
s

k=1

[(qy)n
n]k (25)

Qw=
1
s

�
s

k=1

�� t+�t

t

(qx)w
n

k

dt��
�t
s

�
s

k=1

[(qx)w
n+1]k+ (1−�)

�t
s

�
s

k=1

[(qx)w
n ]k (26)

and
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Figure 5. Control volume for the x-momentum equation.

Qs=
1
s

�
s

k=1

�� t+�t

t

(qy)s
n

k

dt��
�t
s

�
s

k=1

[(qy)s
n+1]k+ (1−�)

�t
s

�
s

k=1

[(qy)s
n]k (27)

where s is the number of discharges (1 or 2) through the control volume face (Figure 4) and
� is a weighting factor, 0���1. The scheme is explicit for �=0, otherwise it is implicit.

Integration of the x-momentum equation over the control volume in Figure 5 gives

� t+�t

t

�
A

�qi

�t
dA dt+

� t+�t

t

�
A

�Jij

�xj

dA dt+
� t+�t

t

�
A

gD
��

�xi

dA dt+
� t+�t

t

�
A

Si dA dt

=0 (28)

Taking the flux qi to be the average over the control volume and evaluating the integrals, the
discretized x-momentum equation is

(qx)c
n+1− (qx)c

n+
��t
�x

[(Jxx)e
n+1− (Jxx)w

n+1]+
(1−�)�t

�x
[(Jxx)e

n− (Jxx)w
n ]

+
��t
�y

[(Jxy)n
n+1− (Jxy)s

n+1]+
(1−�)�t

�y
[(Jxy)n

n − (Jxy)s
n]+

��t
�x

gD [� e
n+1−�w

n+1]

+
(1−�)�t

�x
gD [� e

n−�w
n ]+��tSx

n+1+ (1−�)�tSx
n =0 (29)

Similarly, the discretized y-momentum equation is
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(qy)c
n+1− (qy)c

n+
��t
�x

[(Jyx)e
n+1− (Jyx)w

n+1]+
(1−�)�t

�x
[(Jyx)e

n− (Jyx)w
n ]

+
��t
�y

[(Jyy)n
n+1− (Jyy)s

n+1]+
(1−�)�t

�y
[(Jyy)n

n − (Jyy)s
n]+

��t
�y

gD [�n
n+1−� s

n+1]

+
(1−�)�t

�y
gD [�n

n −� s
n]+��tSy

n+1+ (1−�)�tSy
n=0 (30)

When implemented on the regularized quadtree grid, the approximations to the momentum
equations may require interpolated values of variables at locations other than computational
nodes depending on the local grid configuration. The variables in the continuity equation do
not require interpolation because, by definition, the fluxes are located at the faces of the
control volume and the water level at its centre. The water level in the x-momentum control
volume depicted in Case A (Figure 5) does not require interpolation. Linear h-interpolation is
used to estimate the water level at the face centre of the x-momentum control volume in Case
B (Figure 5). For the regularized quadtree grid, the two cases shown in Figure 6 correspond
to all possible local cell configurations after rotation. The interpolated value, h0, is given for
the case in Figure 6(a) by

h0=
1
2

h2+
1
4

(h1+h3) (31)

and for the case in Figure 6(b) by

h0=
1
3

h1+
1
2

h2+
1
6

h3 (32)

Figure 6. Water level interpolations.
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Figure 7. 	 position at cell centre.

Where h3 does not exist (for example, at a solid boundary), the value of h0 is estimated from

h0=
1
3

h1+
2
3

h2 (33)

The total momentum flux, Jij, is also calculated at the face centres of the momentum control
volume by interpolation. To aid dealing with the local cell configurations, an auxiliary
variable, 	, is specified at the cell centre, corresponding to the �-position (see Figure 7). The
auxiliary variable is defined as follows:

if U2�0

	=U2(qx)2+
(1+
)

4
[U3(qx)3−U2(qx)2]+

(1−
)
4

[U2(qx)2−U1(qx)1] (34)

if U2�0

	=U3(qx)3+
(1+
)

4
[U2(qx)2−U3(qx)3]+

(1−
)
4

[U3(qx)3−U4(qx)4] (35)

where 
 is a parameter in the range [−1, 1]. This 
-interpolation [33] is second-order accurate
when applied on a regular grid. For 
= −1, it gives a fully one-sided upwind scheme on a
regular grid; for 
=1, it gives a second-order central scheme; for 
=0, it gives Fromm’s
method; for 
=1

3, it gives the QUICKEST scheme. Now the interpolation problem has been
reduced to finding values of U and qx at positions 1, 2, 3 and 4 in Figure 8. The total
momentum flux at the momentum control volume face is

Figure 8. Basic topologies for 	 interpolation.
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Figure 9. Linear interpolation for (Jxy)s.

Jxx=�	− �̂t
� (qx)3− (qx)2

�x
�

(36)

and, if necessary, Jxx can be found by an h-interpolation (taking h as Jxx). On the other hand,
the cross-advective terms (e.g. Jxy) may be evaluated at the faces of the control volume by
linear interpolation. For example, (Jxy)s in Figure 9 is determined from

(Jxy)s=
1
4

�(V1+V2)[(qx)1+ (qx)2]− �̂t
�(qx)2− (qx)1

�y
�

(37)

In the present work, Dirichlet conditions were implemented at all boundaries. Closed
boundaries are located at volume flux, qx or qy, positions and may be slip or no-slip as
specified. Open boundaries are restricted to subcritical flows. At an inflow boundary two
conditions are prescribed: the value of water level or discharge as a function of time; and the
flow direction fixed as either x or y. At an outflow boundary, the water level or discharge is
specified as a function of time.

Grid adaptation may be achieved using local mesh enrichment and coarsening controlled by
a parameter determined from a suitable flow variable multiplied by the local grid size. For
shear flows, the depth-averaged vorticity and cell area are sensible choices of flow variable and
local grid size respectively. Hence, the control parameter is the grid cell circulation defined as

��=
��V

�x
−

�U
�y
�
�x�y (38)

In the present implementation, �� is kept reasonably constant as the flow field develops by
refining the grid size in areas where the depth-averaged vorticity is high.

Numerical solution of the discretized shallow water equations was undertaken using an
explicit time-stepping scheme with �=0 and 
=1

3. The procedure may be summarized as
follows:

(i) Create initial quadtree mesh and initialize flow variables;
(ii) Update water levels � at each cell using Equation (23);

(iii) Calculate new depth values, D=h+� ;
(iv) Prescribe updated open boundary water levels;
(v) Calculate new fluxes qx and qy using Equations (29) and (30);

(vi) Update open boundary cell discharges;
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(vii) Increment by one time step;
(viii) Adapt the grid, if required;

(ix) Return to step (ii), until simulation is completed.

Note that three arrays of flags, one for each variable (�, qx, qy), express whether the point is
wet or dry.

To achieve stability, the time step in the explicit scheme was set at a value sufficiently small
that it satisfied the conventional Courant–Friedrichs–Lewy (CFL) stability criterion

�t�
Cr min{�x, �y}

Smax

(39)

where the CFL number Cr=0.8 and the maximum wave speed in the entire flow domain may
be estimated from

Smax=max{ �U c
n�+�gdc, �V c

n�+�gdc} (40)

It should be noted that, although the criterion gave satisfactory results for the cases considered
herein, Fraccorollo and Toro [34] have found that the simple CFL criterion leads to poor
estimates of shock-like free surface flows, such as the initial evolution of dam break fronts,
particularly over dry beds. Fraccorollo and Toro propose an improved CFL-type criterion in
such cases.

5. RESULTS

The numerical model was validated using various benchmark tests, including seiching in a
rectangular basin and jet-forced flow in a circular basin. The tests give a fairly comprehensive
indication of the model’s performance, and close agreement is achieved in comparison with
alternative theoretical models. After validation, the model was used to simulate wind-induced
flow in the Nichupté Lagoon, México.

5.1. Seiche motions without bed friction

Consider the seiching motions in a rectangular basin of length Lx, width Ly and uniform still
water depth d. In the absence of Coriolis and shear stress terms, the shallow water equations
for a horizontal-bottomed basin may be solved to give the free surface amplitude as

�(x, y, t)=
H
2

cos(kxx) cos(kyy) ei�t (41)

where i=�−1, the initial wave height is H, the wave numbers are kx=nx�/Lx and
ky=ny�/Ly, and nx, ny are integers representing the number of half-wavelengths in the x- and
y-directions respectively. The seiche period is given by
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T=
2�

gd
�nx

2

Lx
2 +

ny
2

Ly
2

� (42)

For the validation test, Lx=10000 m, Ly=5000 m and d=1 m. The wind speed is 10 m s−1

from the west, and the wind drag coefficient is 0.002. There is no bed friction, no viscosity and
no Coriolis force. The computational quadtree grid is illustrated in Figure 10; the grid has
maximum resolution level 7, and minimum level 6. The unsteady model was run until steady
state was reached, giving a set-up of approximately 0.1 m; the wind speed was then set to zero
(the initial condition) and the model run for a further 50000 s (13.88 h). Figure 11 shows the
simulated and analytical water level variations predicted at the east end of the basin. After
several cycles, a slight reduction in amplitude occurs indicating that the scheme experiences
some artificial diffusion.

It should be noted that a test with frictional damping was also carried out, and reasonable
agreement obtained with an analytical solution.

5.2. Coriolis-induced flow

For a unidirectional steady flow such that the momentum flux qy=0 and water level gradient
in the x-direction ��/�x=0, in the presence of the Coriolis force, but without bed and surface
stresses, the y-momentum equation reduces to

��

�y
= −

fcqx

gD
(43)

Figure 10. Quadtree grid used for seiching tests.
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Figure 11. Water level motions for seiche without frictional damping.

Hence, in the case of uniform velocity, the Coriolis effect causes a water level gradient
perpendicular to the flow direction. The grid depicted in Figure 12 covers a 400 km2 square
region, and consists of 20 by 20 cells each 1000 m in length. A uniform discharge of qx=10
m2 s−1, a uniform still water depth of 10 m, and Coriolis parameter fc=1.205×10−4 were
prescribed. From Equation (43), a water level gradient of ��/�y= −0.123×10−4 m m−1 is
predicted; and so the water level on the northern boundary should be 0.246 m above the
southern boundary. Figure 13 illustrates the water level distribution, which is in excellent
agreement with the analytical solution.

5.3. Jet-forced flow in a circular reser�oir

The circular basin has a diameter of 1.5 m, a uniform still water depth of 0.1 m, and symmetric
inlet and outlet stems of width b=0.156 m. Laminar jet-forced flow in a circular basin is
useful in testing the momentum diffusion and advective terms in the shallow water equations,
in that large vorticity gradients are generated near the interior corners of the inflow and
outflow stems. The inlet Reynolds number is defined as

Re=
bU
2�

(44)
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Figure 12. Grid used for Coriolis test.

where U is the inlet velocity and � is the fluid kinematic viscosity. Here, U=0.1 m s−1 and
�=0.00078 m2 s−1, giving an inlet Reynolds number Re=10. The initial quadtree grid,
illustrated in Figure 14, is subdivided to level 8 at the circular boundary (�x=0.01 m) with an
interior regular grid of level 5. Bed and surface stresses are set to zero, along with the Coriolis
parameter. During the time stepped flow simulation the grid was refined according to the local
cell circulation criterion, Equation (38), up to level 10. Figure 15 depicts the converged grid at
steady state. The velocity vector distribution is given in Figure 16, where increased resolution
is evident at the shear layers close to the inlet and outlet. The overall flow pattern is in close
agreement with Dennis [38] who obtained a semi-analytical solution to the two-dimensional
flow problem and numerical predictions by Borthwick and Kaar [13] who solved the shallow
water equations in curvilinear depth-averaged stream function and vorticity transport form on
a boundary-fitted grid.

5.4. Wetting and drying tests

In the present model, wetting and drying is implemented using a simple mass conservation
approach designed for the explicit scheme on a staggered quadtree grid. The water depth in
each cell is checked, and the cell is considered to be wet if the depth is greater than a prescribed
minimum value (5 cm in the cases considered in this paper). It should be noted that the
minimum depth criterion has an effect on the bed shear stress term, as the depth appears in the
denominator. If the depth estimated at a cell face is less than the prescribed minimum, then the
momentum flux is set to zero there. When the depth is greater than the minimum, the
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Figure 13. Water level contours for the Coriolis test.

Figure 14. Initial quadtree grid for jet-forced flow in a circular reservoir.
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Figure 15. Adapted quadtree grid for jet-forced flow in a circular reservoir.

momentum flux is evaluated using the appropriate momentum equation. For the cases
considered herein, the scheme did not produce non-physical oscillations.

Three standard test cases were implemented. In the first, oscillatory wetting and drying were
simulated in a rectangular basin containing a plane sloping beach. The second test comprised
tidal flow around a gently sloping circular island. In both cases, the wetting and drying

Figure 16. Depth-averaged velocity vectors in circular reservoir, Re=10.
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simulations gave satisfactory results, with the shoreline moving as expected (see Cruz León
[35]). It should be underlined that the wetting and drying model used herein is very simple
and could suffer instabilities in the drying phase due to feedback from instantaneous flux
changes at cell boundaries (see Falconer and Owens [36]). More advanced, and physically
correct, wetting and drying approaches such as that proposed by Falconer and Chen [37]
are recommended for site-specific practical applications.

The third, which is described in detail here, focused on inundation and involved a
comparison with Thacker’s [16] exact solution of the non-linear shallow water equations for
a parabolic mound of water spreading over a frictionless horizontal bed. There is no
Coriolis force. The free surface elevation and x- and y-direction mass fluxes are

�=h0
� T2

t2+T2−
x2+ y2

R0
2

� T2

t2+T2

�2n
(45)

qx=
xt�

t2+T2 and qy=
yt�

t2+T2 (46)

where h0 is the initial free surface elevation of the centre of the parabolic mound above the
horizontal bed, x and y are the horizontal Cartesian co-ordinates measured from the
mound centre, and T is given by

T=
R0

(2gh0)1/2 (47)

in which R0 is the initial radius of the mound. For initial conditions, qx=qy=0 at t=0,
Equation (45) becomes

�=h0
�

1−
x2+y2

R0
2

n
(48)

At time t=T, the central water height is h0/2. In this case, the following parameters are
used: initial water height, h0=1 m; initial radius R0=250 m. The computational grid, in
Figure 17, has two levels of refinement: level 6 and level 7, the latter with �x=7.8125 m.
The refined zone is non-adaptive and has been deliberately selected because it does not fit
the expected polar evolution of the flood. Figure 18 presents the predicted water level
contours at t=T, which compare well with the analytical solution given in Figure 19, even
though the grid is quite coarse. The results demonstrate that the inundation front remains
quite circular, even when propagating through quadtree grid zones of different resolution.
This confirms that the finite volume solution of the wetting problem is proper in that it
does not produce significant amplitude or phase errors. The test is also valid for mass and
momentum conservation.
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Figure 17. Quadtree grid used in parabolic mound test.

Figure 18. Simulated water level contours for circular mound at t=T.
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Figure 19. Analytical water level contours for circular mound at t=T.

5.5. Wind-induced circulation in the Nichupté Lagoon

In Mexico there are more than 128 coastal lagoons, all sharing certain common features,
namely: shallow water; complicated geometry; high nutrient levels; large seasonal variations in
temperature and salinity; erodible beds; fresh water inflows; and connections to the sea. A lack
of understanding of the behaviour of these shallow water ecosystems has led to damaging
management strategies being adopted locally. For example, the aquatic environment of the
Laguna de Términos was destabilized by widening one of its entrances to the sea. In the
Laguna de Nichupté, eutrophication resulted from partial closure of its entrance. Significant
reductions in fish populations have been caused by the discharge of organic material by
riparian owners. Hence, there is a major incentive to predict accurately the behaviour of
coastal lagoon ecosystems.

The Nichupté Lagoon is situated in the south-east of México. It is approximately 13 km
long and 6 km wide (Figure 20) with a surface area of 48 km2 and a volume of 90×106 m3.
The water depths are extremely shallow, having an average of 2 m, and ranging from a few
centimetres to 5 m in one of the channels.

Figure 21 illustrates the 12-level quadtree grid (superimposed on a 6-level uniform grid)
created about seeding points which describe the flow boundaries of the Nichupté Lagoon. The
portion of grid located within the Lagoon geometry has 1:2 regularization, whereas that
outside the Lagoon is left non-regularized. The grid achieves high resolution in regions where
the geometry is contorted, but with a manageable total of 8125 interior cells. It should be
noted that the quadtree grid cells vary in length from 218 m at level 6 to 3.4 m at level 12. It
is evident that the mesh has high resolution in regions where the geometry is particularly
contorted, whilst the total number of grid cells is much lower than would be required for a
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Figure 20. Nichupté Lagoon bathymetry.

uniformly fine grid. In this case, the quadtree grid technique is more effective than curvilinear
or regular patched grid generation methods, which have to account for interface information
in the resulting block meshes. The quadtree grid gives fine resolution at the point where the
channel narrows, which is obviously useful for accurate flow modelling. Figure 22 shows a
snapshot of the wind-induced flow during the initial set-up for a prevailing wind of speed 10
m s−1, using the quadtree shallow water solver, with uniform surface roughness coefficient
Cw=0.002. Bed roughness is assumed constant throughout the lagoon corresponding to a
Chézy coefficient of 50 m1/2 s−1. The largest depth-averaged velocities occur in the channels
connecting the lagoon system and in the shallows close to headlands. These transient currents
play a vital role in the water exchange mechanism between adjacent lagoons. Quadtree
gridding is thus very useful in producing high spatial resolution and hence realistic hydrody-
namic representation of the local flow processes in the narrow interconnecting passages. In
principle, the numerical modelling strategy could be utilized to assess the impact of natural or
man-made changes to a typical connecting channel geometry. Although the results are
preliminary, the case indicates the potential of quadtree-based meshes for application to
complicated shallow flow geometries.

6. CONCLUSIONS

An explicit time stepping numerical model for the solution of the shallow water equations on
hierarchical quadtree grids has been presented in this paper. Hierarchical grids are capable of
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Figure 21. Regularized quadtree grid fitted to Nichupté Lagoon geometry.

spatially discretizing large flow domains while giving high resolution in sub-regions where, for
example, the current shear or vorticity is greatest. In a fractal sense, quadtree grids can readily
be fitted to any boundary no matter how distorted, provided absolute convergence to the
boundary is not required and a low level of stepped boundary can be tolerated. Herein, a new
quadtree numbering system is proposed whereby recursion is avoided and the indexing system
corresponds to finite volume (or finite difference) notation, rendering neighbour cell finding
straightforward. In the new numbering system each cell has three integer values, the first
represents the position in the x-direction, the second the y-direction position, and the third is
the subdivision level of the cell. It should be noted that quadtree grids are well suited to
applications involving irregular boundaries, or where the flow contains locally steep velocity
gradients; for nearly uniform domains, the cost of using a quadtree grid is likely to outweigh
that of the equivalent uniform grid whether it be rectangular or curvilinear.

The unsteady shallow water equations are discretized using finite volumes on quadtree grids
with a staggered arrangement of the water level and mass flux variables. Grid adaptation is
according to a cell circulation parameter. A range of validation tests has been used to test the
solver. The results for seiching without friction in a rectangular channel indicate that the model
predicts the natural frequency of oscillation accurately, but produces slight dissipation of the
standing wave. The Coriolis test demonstrates that the model correctly handles the appropriate
source term. Laminar jet-forced flow in a circular basin has been modelled using adaptive
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Figure 22. Simulated wind-induced flow in the Nichupté Lagoon.

quadtree grids, and the steady state flow pattern was found to be very similar to that found
by alternative models (e.g. Dennis [34] and Borthwick and Kaar [13]). The model is able to
predict the detailed localized growth of vortices either side of the throughflow stream, which
jets from inlet to outlet. Wetting and drying at moving land water interfaces has been
incorporated in the model. An illustrative example of the application of the quadtree based
shallow flow solver to extremely complicated multi-connected regions is provided by wind-
induced flow in the Nichupté Lagoon, México.
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